
Effective Teaching of “Advanced Programming”

(A Module in the CSEDU – Certificate Program in CS Education)

This module aims to help teachers in colleges/universities (attendees) improve their teaching of
the Advanced Programming course, as per the AICTE syllabus for it (given at the end of this
document). I.e. After this module, the attendees will improve their teaching of this course, leading
to improved learning by their students and more students achieving the learning outcomes of the
AICTE course. This module is part of the Certificate Program in CS Education initiative
(csedu.iiitd.ac.in). The main learning outcomes of this module are: (At the end of the module, an
attendee will:)

● Have a clearer understanding of the importance of this course in a CSE program, the
desired learning outcomes established in the revised AICTE course (attached herewith),
and the course syllabus.

● For each topic in the AICTE syllabus, have a deeper understanding of concepts, what is
important, how to teach, what type of assignments to give, etc.

Requirements for Module Participants

● Have taught any programming courses at a basic level (any language).
● Have access to a good laptop (or Desktop) and internet connection.
● Have basic knowledge of Java language.
● Commit to spending at least 5 hours per week (avg) for the module.

Module Summary

Each weekly session will discuss the topics listed below, how to effectively teach them and sample
assignments. Lab assignments will be given each week. Some sessions will have in-class
assignments where the participants will be expected to work out something and discuss it with
the instructor/other participants. This course will use the Java programming language, but
participants are expected to have basic familiarity with Java.

The week-wise syllabus for this module is as follows:

Wk Topics Assignment - Self-work

1 Introduction to object-oriented
programming (declaring/defining
classes and methods, encapsulation,
working with objects)

Install necessary software, gain familiarity
with IDE (NetBeans, Eclipse, etc.), write
program demonstrating basic OOP concepts
(classes/objects), compile and run the
program, debug by setting breakpoints

2 Class relationships (association,
composition, objects as parameters)

Take home programming assignment based
on identifying different class relationships and
implementing them.

3 Interfaces Take home assignment based on declaring

and implementing interfaces

4 Polymorphism using interfaces Take home assignment based on
understanding method
resolution/polymorphism using interfaces,
understanding declared v/s actual type

5 Inheritance Take home assignment covering code reuse,
IS-A relationship

6 Polymorphism using inheritance Take home assignment based on method
overloading and method overriding.

7 Defensive programming and exception
handling

Take home assignment based on handling
basic exceptions (both checked and
unchecked type), writing and handling custom
exceptions

8 Unit testing Take home assignment on JUnit

9 Basic modelling technique (class
diagrams and use case diagrams)

Apply the learnings to model some of the
programming assignments used in this
course

10 Design patterns Take home assignment based on identifying
different design patterns and implementing
them.

11 Multithreading and thread pools Take home assignment based on parallelizing
some simple algorithm both by using explicit
multithreading, and thread pool runtime

12 Event-driven programming using
JavaFX

Take home assignment on creating Graphical
User Interfaces (GUIs)

13 Tools for plagiarism detection Usage

Schedule

The module will meet once a week. In addition, a weekly help/lab session to clear doubts and
help with the assignment will also be provided through TAs. Details about joining these sessions
will be provided later.

● Weekly session: Monday 4.30 PM - 6 PM
● Weekly lab/help session: Friday 4.30 PM - 6 PM

Text to be used for the Module

We will not follow a specific textbook, but here are some recommended books/resources for
reference:

Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, Kelli A. Houston.
Object-Oriented Analysis and Design with Applications

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Grady Booch. Design Patterns: Elements
of Reusable Object-Oriented Software

Resources to be provided to attendees

● Lecture Notes / ppt for the different topics in the course
● Some sample assignments for each of the major modules
● Some online resources that the attendees can use to revise/update their knowledge

